Black Holes, Explained (2024)

Black holes are points in space that are so dense they create deep gravity sinks. Beyond a certain region, not even light can escape the powerful tug of a black hole's gravity. And anything that ventures too close—be it star, planet, or spacecraft—will be stretched and compressed like putty in a theoretical process aptly known as spaghettification.

There are four types of black holes: stellar, intermediate, supermassive, and miniature. The most commonly known way a black hole forms is by stellar death. As stars reach the ends of their lives, most will inflate, lose mass, and then cool to form white dwarfs. But the largest of these fiery bodies, those at least 10 to 20 times as massive as our own sun, are destined to become either super-dense neutron stars or so-called stellar-mass black holes.

In their final stages, enormous stars go out with a bang in massive explosions known as supernovae. Such a burst flings star matter out into space but leaves behind the stellar core. While the star was alive, nuclear fusion created a constant outward push that balanced the inward pull of gravity from the star's own mass. In the stellar remnants of a supernova, however, there are no longer forces to oppose that gravity, so the star core begins to collapse in on itself.

If its mass collapses into an infinitely small point, a black hole is born. Packing all of that bulk—many times the mass of our own sun—into such a tiny point gives black holes their powerful gravitational pull. Thousands of these stellar-mass black holes may lurk within our own Milky Way galaxy.

One black hole is not like the others

Supermassive black holes, predicted by Einstein's general theory of relativity, can have masses equal to billions of suns; these cosmic monsters likely hide at the centers of most galaxies. The Milky Way hosts its own supermassive black hole at its center known as Sagittarius A* (pronounced “ay star”) that is more than four million times as massive as our sun.

The tiniest members of the black hole family are, so far, theoretical. These small vortices of darkness may have swirled to life soon after the universe formed with the big bang, some 13.7 billion years ago, and then quickly evaporated. Astronomers also suspect that a class of objects called intermediate-mass black holes exist in the universe, although evidence for them is so far debatable.

No matter their starting size, black holes can grow throughout their lives, slurping gas and dust from any objects that creep too close. Anything that passes the event horizon, the point at which escape becomes impossible, is in theory destined for spaghettification thanks to a sharp increase in the strength of gravity as you fall into the black hole.

Black Holes, explained

As astrophysicist Neil Degrasse Tyson once described the process: “While you're getting stretched, you're getting squeezed—extruded through the fabric of space like toothpaste through a tube.”

But black holes aren't exactly “cosmic vacuum cleaners,” as often depicted in popular media. Objects must creep fairly close to one to lose this gravitational tug-of-war. For example, if our sun was suddenly replaced by a black hole of similar mass, our planetary family would continue to orbit unperturbed, if much less warm and illuminated.

Peering through the darkness

Because black holes swallow all light, astronomers can't spot them directly like they do the many glittery cosmic objects in the sky. But there are a few keys that reveal a black hole's presence.

For one, a black hole's intense gravity tugs on any surrounding objects. Astronomers use these erratic movements to infer the presence of the invisible monster that lurks nearby. Or objects can orbit a black hole, and astronomers can look for stars that seem to orbit nothing to detect a likely candidate. That's how astronomers eventually identified Sagittarius A* as a black hole in the early 2000s.

Black holes are also messy eaters, which often betrays their locations. As they sip on surrounding stars, their massive gravitational and magnetic forces superheat the infalling gas and dust, causing it to emit radiation. Some of this glowing matter envelops the black hole in a whirling region called an accretion disk. Even the matter that starts falling into a black hole isn't necessarily there to stay. Black holes can sometimes eject infalling stardust in mighty radiation-laden burps.

Fuel their curiosity with your gift

GIVE NAT GEO

Black Holes, Explained (2024)

FAQs

Black Holes, Explained? ›

A black hole is a place in space where gravity pulls so much that even light can not get out. The gravity is so strong because matter has been squeezed into a tiny space. This can happen when a star is dying. Because no light can get out, people can't see black holes. They are invisible.

What is a black hole explained simply? ›

A black hole is an area of such immense gravity that nothing—not even light—can escape from it. Black holes form at the end of some stars' lives. The energy that held the star together disappears and it collapses in on itself producing a magnificent explosion.

What happens if we go into a black hole? ›

If you leapt heroically into a stellar-mass black hole, your body would be subjected to a process called 'spaghettification' (no, really, it is). The black hole's gravity force would compress you from top to toe, while stretching you at the same time… thus, spaghetti.

What is the cause of black holes? ›

If you packed more and more mass into the same tiny space, eventually it would create gravity so strong that it would exert a significant pull on passing rays of light. Black holes are created when massive stars collapse at the end of their lives (and perhaps under other circ*mstances that we don't know about yet).

Does time exist in a black hole? ›

According to Einstein's theory, time and space, in a way, trade places inside the hole. Inside the black hole, the flow of time itself draws falling objects into the center of the black hole. No force in the universe can stop this fall, any more than we can stop the flow of time.

Where do black holes take you? ›

When matter falls into or comes closer than the event horizon of a black hole, it becomes isolated from the rest of space-time. It can never leave that region. For all practical purposes the matter has disappeared from the universe.

Could a human survive a black hole? ›

Within any black hole is the central point, the singularity, which has infinite gravity and where mass is compressed into an infinitely small point. There, it is game over. There's no surviving. And therefore the idea of traveling through time and space, via black hole or wormhole, don't really register in reality.

What is the closest black hole to Earth? ›

The closest black hole to Earth is Gaia-BH1 (also discovered by Gaia), which is 1,560 light-years away. Gaia-BH1 has a mass around 9.6 times that of the sun, making it considerably smaller than this newly discovered black hole.

Are we in danger of a black hole? ›

Unlike tigers, black holes don't hunt. They're not roaming around space eating stars and planets. There is no black hole near our Solar System, so there is no chance of Earth ever getting sucked into a black hole.

How much is 1 minute in black holes? ›

“If you were to stand just outside the event horizon of Sagittarius A*, and you stood there for one minute, 700 years would pass because time passes so much slower in the gravitational field there than it does on Earth.” Some have suggested that black holes could be used for time travel.

What was Stephen Hawking's theory on black holes? ›

A central law for black holes predicts that the total area of their event horizons – the boundary beyond which nothing can ever escape – should never shrink. This law is Hawking's area theorem, named after physicist Stephen Hawking, who derived the theorem in 1971.

Do wormholes exist? ›

While researchers have never found a wormhole in our universe, scientists often see wormholes described in the solutions to important physics equations. Most prominently, the solutions to the equations behind Einstein's theory of space-time and general relativity include wormholes.

What was inside of a black hole? ›

General relativity predicts that the very center of a black hole contains a point where matter is crushed to infinite density. It's the final destination for anything falling into the event horizon.

What do black holes look like in real life? ›

Black holes don't emit or reflect light, making them effectively invisible to telescopes. Scientists primarily detect and study them based on how they affect their surroundings: Black holes can be surrounded by rings of gas and dust, called accretion disks, that emit light across many wavelengths, including X-rays.

How long do black holes last? ›

For the supermassive black holes that we find at the centres of most galaxies, it could take as long as 10100 years for them to evaporate, or 'die'. However, Hawking radiation is yet to be conclusively discovered and so black hole evaporation remains a theoretical process for now.

Will we ever know what's inside a black hole? ›

Scientists would finally know—but only in the theoretical sense, of course. That's the thing about black holes. We can get only so close to the truth, only experience certain kinds of knowing. Even the powerful telescopes that have shown us sparkling galaxies nearly all the way back to the Big Bang can't help us here.

What is the point inside a black hole? ›

The singularity at the center of a black hole is the ultimate no man's land: a place where matter is compressed down to an infinitely tiny point, and all conceptions of time and space completely break down. And it doesn't really exist. Something has to replace the singularity, but we're not exactly sure what.

What is the logic behind black holes? ›

If its mass collapses into an infinitely small point, a black hole is born. Packing all of that bulk—many times the mass of our own sun—into such a tiny point gives black holes their powerful gravitational pull. Thousands of these stellar-mass black holes may lurk within our own Milky Way galaxy.

Top Articles
Latest Posts
Article information

Author: Dr. Pierre Goyette

Last Updated:

Views: 6718

Rating: 5 / 5 (50 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Dr. Pierre Goyette

Birthday: 1998-01-29

Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

Phone: +5819954278378

Job: Construction Director

Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.